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Linear energy harvesters have a narrow frequency bandwidth and hence operate

efficiently only when the excitation frequency is very close to the fundamental

frequency of the harvester. Consequently, small variations of the excitation frequency

around the harvester’s fundamental frequency drops its small energy output even

bandwidth, some recent solutions call for utilizing energy harvesters with stiffness-type

nonlinearities. From a steady-state perspective, this hardening-type nonlinearity can

extend the coupling between the excitation and the harvester to a wider range of

frequencies. In this effort, we investigate the response of such harvesters, which can be

modeled as a uni-modal duffing-type oscillator, to White Gaussian and Colored

excitations. For White excitations, we solve the Fokker–Plank–Kolmogorov equation for

the exact joint probability density function of the response. We show that the expected

value of the output power is not even a function of the nonlinearity. As such, under

White excitations, nonlinearities in the stiffness do not provide any enhancement over

the typical linear harvesters. We also demonstrate that nonlinearities in the damping

and inertia may be used to enhance the expected value of the output power. For Colored

excitations, we use the Van Kampen expansion and long-time numerical integration to

investigate the influence of the nonlinearity on the expected value of the output power.

We demonstrate that, regardless of the bandwidth or the center frequency of the

excitation, the expected value of the output power decreases with the nonlinearity.

With such findings, we conclude that energy harvesters modeled as uni-modal duffing-

type oscillators are not good candidates for harvesting energy under forced random

excitations. Using a linear transformation, results can be extended to the base excitation

case.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Today, many critical electronic devices, such as health-monitoring sensors [1,2], pace makers [3], spinal stimulators [4],
electric pain relievers [5], wireless sensors [6–8], etc., require minimal amounts of power to function. Such devices have,
for long time, relied on batteries that have not kept pace with the devices’ demands, especially in terms of energy density
[9]. In addition, batteries have a finite life span, and require regular replacement or recharging, which, in many of the
previously mentioned examples, is a very cumbersome process. In light of such challenges, vibration-based energy
harvesting has flourished as a major thrust area of micro power generation. Various devices have been developed to
ll rights reserved.

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2010.04.002
mailto:mdaqaq@clemson.edu


ARTICLE IN PRESS

M.F. Daqaq / Journal of Sound and Vibration 329 (2010) 3621–36313622
transform mechanical motions directly into electricity by exploiting the ability of active materials and some mechanisms
to generate an electric potential in response to mechanical stimuli and external vibrations [10–12].

However, there are still two major issues limiting the efficiency of energy harvesters. First, traditional linear energy
harvesters have a very narrow frequency bandwidth and, hence, operate efficiently only when the excitation frequency is
very close to the fundamental frequency of the harvester. Small variations in the excitation frequency around the
harvester’s fundamental frequency drops its small energy output even further making the energy harvesting process
inefficient. Second, most environmental excitations have a broad-band or time-dependent characteristics in which the
energy is distributed over a wide spectrum of frequencies or the dominant frequencies vary with time. Together, these two
factors have a negative influence that reduces the output power and hinders the efficiency of the harvester.

To resolve these two issues, a large portion of the energy harvesting research is currently directed towards designing
harvesters capable of scavenging energy from non-stationary and random excitations [13–21]. One proposed solution is
based on purposefully introducing nonlinearities into the harvester’s dynamics [22–24]. A class of such harvesters utilizes
a nonlinear compliance to extend the coupling between the environmental excitation and the harvester to a wider range of
frequencies. The nonlinearities can be introduced using nonlinear magnetic levitation [18,20], Fig. 1(b), or by other design
means [25], Fig. 1(a).

In general, such harvesters can be modeled as a uni-modal duffing oscillator whose equation of motion can be
written as

€xþ2zeff _xþxþbx3 ¼ FðtÞ (1)

where x denotes the displacement, zeff is an effective damping ratio that accounts for both electrical and mechanical
damping, b40 is a stiffness nonlinearity coefficient, and F(t) is an external excitation. When the excitation is harmonic
with a fixed frequency, the nonlinearity bends the steady-state frequency-response curves towards larger frequencies as
shown in Fig. 2(a). Consequently, the coupling between the excitation and the harvester is extended to a wider frequency
range. In addition, as a result of the nonlinearity, a region of multiple solutions is born. Specifically, for a certain range of
frequencies, three branches of solutions co-exist. It is still not clear how the presence of such regions of multiple solutions
influences the performance of the harvester especially under random and indeterministic excitations.

A quick look at the power spectral density curves of x(t) under White Gaussian excitations, see Fig. 2(b), reveals that the
nonlinearity causes the spectral amplitude to decrease, shifts the peaks towards larger frequencies, and broadens the
spectral response. To investigate the implications of these effects on the expected value of the output power, this effort
aims at delineating the role that stiffness-type nonlinearities play in energy harvesting under random forced excitations.
Specifically, we want to understand whether the broadening of the spectral density curves can aid in the transduction of
energy harvesters under realistic excitations and whether the common steady-state fixed-frequency analysis currently
Fig. 1. Schematics of two uni-modal duffing-type harvesters.
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Fig. 2. (a) Steady-state frequency response curves of Eq. (1) under harmonic excitations of a fixed frequency and (b) power spectral density curves of xðtÞ

under White Gaussian excitations of a fixed spectral density.
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adopted in the literature is a valid performance indicator. Towards that end, this paper investigates how the statistical
characteristics of the output power are affected by the statistics (e.g. bandwidth, and center frequency) of the excitation as
well as the nonlinearity. The rest of the paper is organized as follows: In Section 2, we obtain an analytical expression for
the expected value of the power under White Gaussian excitations by solving the Fokker–Plank–Kolmogorov (FPK)
equation for the exact probability density function (PDF) of the response. In Section 3, we use the Van Kampen expansion
to generate a set of linearly coupled ordinary differential equations governing the evolution of the response statistics under
Colored excitations. In Section 4, we solve the equations and study the influence of the excitation bandwidth and center
frequency on the expected value of the power. Finally, in Section 5, we present our conclusions and recommendations for
future work.

2. Response to White Gaussian excitations

We consider an electromagnetic duffing-type harvester, similar to the one shown in Fig. 1(b). This device was proposed
by Mann and Sims [18] in the context of energy harvesting using a nonlinear compliance. However, in contrast to [18],
we consider the case of forced vibration rather than seismic or base excitation. The equations governing the motion can be
expressed as

€uþ2zon _uþo2
nuþyiþbu3 ¼ FðtÞ

y _u ¼ iR (2)

where u represents the position of the mass, z is the mechanical damping ratio, on is the natural frequency, b is a cubic
nonlinearity coefficient, y is an electromechanical coupling coefficient, R is the load resistance, and i is the current passing
through the load. It is worth noting that Equation (2) can be used to represent the dynamics under base excitations if u is
considered to be the relative displacement and F(t) to be the base acceleration. The force F(t) is assumed to be a Gaussian
White noise process with zero mean and autocorrelation function

/FðtÞFðtþtÞS¼ 2pS0dðtÞ (3)

where /S denotes the expected value, S0 is the spectral density of the excitation, and d is the dirac-delta function. Without
loss of generality, we can assume that all the parameters in the equation are non-dimensional. To obtain an analytical
expression for the expected value of the output power, we cast the problem in the Itô stochastic differential form where
Eq. (2) can be rewritten as [26]

dx1 ¼ x2 dt

dx2 ¼�fceff x2þo2
nx1þbx3

1gdtþS dB (4)

where x1=u, x2 ¼ _u, ceff ¼ 2zonþy
2=R, S¼ pS0, and B is a Brownian motion process such that dF=dt¼ BðtÞ. The joint PDF,

P(x1, x2, t), of the response can be obtained by solving the linear diffusion FPK equation which can be expressed for system
(4) as [27]

@P

@t
¼�

@

@x1
ðx2PÞþ

@

@x2
ðfceff x2þo2

nx1þbx3
1gPÞþS

@2P

@x2
(5)

subjected to the boundary conditions Pð�1,tÞ ¼ Pð1,tÞ ¼ 0. While an analytical solution of Eq. (5) is not attainable in the
general sense; a stationary solution can be obtained by sitting @P=@t equal to zero. In such case, Eq. (5) admits a solution of
the form:

Pðx1,x2,tÞ ¼ P1ðx1,tÞ � P2ðx2,tÞ ¼ A1 exp �
ceff

2S
o2

nx2
1þ

b
2

x4
1

� �� �
� A2 exp �

ceff

2S
x2

2

� �
(6)

where the normalization constants A1 and A2 are given by

A�1
1 ¼

Z 1
�1

exp �
ceff

2S
o2

nx2
1þ

b
2

x4
1

� �� �
dx1; A�1

2 ¼

Z 1
�1

exp �
ceff

2S
x2

2

� �
dx2 (7)

Note that the stationary PDF of the response is factored into a function of the displacement, x1, and a function of the
velocity, x2. This implies that x1 and x2 are independent random variables with the PDF of x2 being independent of the
nonlinearity coefficient, b. With that, the expected value of the mean square velocity can be obtained using

/ _u2S¼/x2
2S¼

Z 1
�1

x2
2P2ðx2,tÞdx2 ¼

S

ceff
(8)

From Eqs. (2) and (8), the expected valued of the mean square output current passing through the load can be written as

/i2S¼
y
R
/x2

2S¼
yS

Rceff
(9)
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and the expected value of the power (mean power) is

/PS¼ yS

ceff
(10)

Eq. (10) can be used to determine the mean output power of a duffing-type harvester under White Gaussian excitations.
The resulting expression depends only on the electromechanical coupling coefficient, y, the excitation’s spectral density, S,
and the effective damping in the system, ceff. This clearly indicates that the expected value of the power is not a function of
the nonlinearity and is equal to that resulting from a linear harvester with b¼ 0. Consequently, under White Gaussian
excitations of similar spectral densities, both a linear and a uni-modal duffing-type harvester produce the same mean
output power.

The stationary PDF of the response given by Eq. (6) also suggests that in order to alter the value of the mean square
velocity, and hence power, from the linear case, one should seek other types of nonlinearities. For instance, damping-type
nonlinearities that are function of the velocity, x2, can alter the velocity part of the joint PDF, P2(x2,t), which, in turn, may
improve the output power depending on the sign and order of the nonlinearity. Inertia nonlinearities and nonlinearities
that depend on the velocity and displacement together will make the PDF inseparable and hence are also expected to alter
the mean power. With these findings, the question remains whether such nonlinearities can be physically introduced
into the dynamics of an actual energy harvesting device.

3. Response to Colored excitations

While many environmental excitations exhibit the characteristics of White excitations, many others have most of their
energy trapped within a narrow bandwidth possessing the characteristics of a narrow-band (Colored) excitation. To
analyze the influence of the center frequency, bandwidth, and variance of such excitations on the output power of the
harvester considered, we couple Eqs. (2) with a second-order filter according to

€Fþg _Fþo2
c F ¼NðtÞ (11)

where oc is the center frequency of the filter and hence the excitation, g is its bandwidth, NðtÞ ¼ g1=2ocWðtÞ, and W(t) is a
White Gaussian excitation of a spectral density, S0, and a correlation function /WðtÞWðtþtÞS¼ 2pS0dðtÞ. With this choice
of N(t), the spectrum of F(t) can be written as

jFðoÞj2 ¼ go2
c S0

ðo2
c�o2Þ

2
þo2g2

(12)

As shown in Fig. 3, for the spectrum shown, the area under the jFj2�o curve remains constant regardless of the choice of g
and oc . In other words, the variance of F(t), /F2S¼ pS0, is independent of the filter’s bandwidth and the center frequency.
This is essential for the purpose of comparing the mean power under Colored excitations of different bandwidths and
center frequencies.

Again, to find an expression for the mean power, we cast the problem in the Itô stochastic form as

dx1 ¼ x2 dt

dx2 ¼ ð�ceff x2�o2
nx1�bx3

1þx3Þdt

dx3 ¼ x4 dt
�=0.1
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Fig. 3. Power spectrum of F(t) for different bandwidths.
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dx4 ¼ ð�gx4�o2
c x3Þdtþg1=2ocS dB (13)

where ½x1,x2,x3,x4� ¼ ½u, _u,F, _F �. With that, the joint PDF, P(x1, x2, x3, x4, t), of the response can be obtained by solving the
linear diffusion FPK equation which can be expressed for system (13) as

@P

@t
¼�

@

@x1
fx2Pgþ

@

@x2
fPðceff x2þo2

nx1þbx3
1�x3Þg�

@

@x3
fx4Pgþ

@

@x4
fPðgx4þo2

c x3ÞgþaS
@2P

@2x4

(14)

subjected to the boundary conditions Pð�1,tÞ ¼ Pð1,tÞ ¼ 0. Here a¼ go2
c . Even in the steady-state case, an exact solution

of Eq. (14) is not attainable. For small nonlinearities and mean square values of the xi’s, we can use the Van Kampen
expansion [28] to obtain an approximate solution of Eq. (14). In the Van Kampen expansion, which was introduced in the
context of some statistical physics problem, the variables are expanded in a successive powers of the excitation’s spectral
density S. That is,

x1 ¼ S1=2Z1þOðS3=2Þ

x2 ¼ S1=2Z2þOðS3=2Þ

x3 ¼ S1=2Z3þOðS3=2Þ

x4 ¼ S1=2Z4þOðS3=2Þ (15)

The reason for expanding xi in orders of S1/2 stems from our previous knowledge that mean square value of xi or /x2
i S,

which is a measure of the response amplitude, will turn out to be proportional to S. With this expansion, the PDF becomes a
function of the new variables Zi as

Pðx1,x2,x3,x4,tÞ ¼ PðS1=2Z1,S1=2Z2,S1=2Z3,S1=2Z4,tÞ ¼ GðZ1,Z2,Z3,Z4,tÞ (16)

In terms of the new PDF, the FPK equation becomes

@G

@t
¼�Z2

@G

@Z1

þ
@G

@Z2

fo2
nZ1þbSZ3

1�Z3gþceff
@

@Z2

fGZ2g�Z4

@G

@Z3

þo2
cZ3

@G

@Z4

þa @
2G

@2Z4

þOðS3=2Þ (17)

subjected to the boundary conditions Gð�1,tÞ ¼ Gð1,tÞ ¼ 0. Next, we generate the equations governing the response
statistics (statistical moments). For a general function FðZ1,Z2,Z3,Z4Þ, the response statistics, /FS, can be obtained by
multiplying both sides of Eq. (17) by F and integrating by parts over the entire space; that isZ 1

�1

Z 1
�1

Z 1
�1

Z 1
�1

F
@G

@t
dZ1 dZ2 dZ3 dZ4

¼

Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

F �Z2

@G

@Z1

þ
@G

@Z2

fo2
nZ1þbSZ3

1�Z3gþceff
@

@Z2

fGZ2g�Z4

@G

@Z3

þo2
cZ3

@G

@Z4

þa @
2G

@2Z4

( )
dZ1 dZ2 dZ3 dZ4

(18)

For the sake of illustration, we obtain the expected mean square value of variable Z1, i.e., F¼ Z2
1. In that case, we can writeZ 1

�1

Z 1
�1

Z 1
�1

Z 1
�1

Z2
1

@G

@t
dZ1 dZ2 dZ3 dZ4

¼

Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

Z2
1 �Z2

@G

@Z1

þ
@G

@Z2

fo2
nZ1þbSZ3

1�Z3gþceff
@

@Z2

fGZ2g�Z4

@G

@Z3

þo2
cZ3

@G

@Z4

þa @
2G

@2Z4

( )
dZ1 dZ2 dZ3 dZ4

(19)

The left-hand side of the equation can be rewritten asZ 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

Z2
1

@G

@t
dZ1 dZ2 dZ3 dZ4 ¼

@

@t

Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

Z2
1G dZ1 dZ2 dZ3 dZ4 ¼

d

dt
/Z2

1S (20)

The right-hand side can be integrated by parts. Since the boundary conditions on the FPK equation are identically zero;
all the terms except the first one vanish upon integration. This leads to

d

dt
/Z2

1S¼�
Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

Z2
1Z2

@G

@Z1

dZ1 dZ2 dZ3 dZ4

¼�Z2
1Z2Gj1�1þ2

Z 1
�1

Z 1
�1

Z 1
�1

Z 1
�1

Z1Z2G dZ1 dZ2 dZ3 dZ4 ¼ 2/Z1Z2S (21)

In a similar manner, we generate the equations governing the other response statistics. Keeping only moments up to fourth
order, we obtain 45 linearly coupled equations that need to be solved together. These equations are listed in Appendix A.
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4. Results and discussion

4.1. Effect of the excitation’s bandwidth

To analyze the effect of the excitation’s bandwidth on the expected stationary value of the power, /PS, we study
variation of the stationary mean square velocity, /x2

2S, (proportional to the power), with the nonlinearity for different
bandwidths. To that end, we set the time derivatives in the equations governing the response statistics to zero and solve
the resulting 45 linearly coupled algebraic equations for the stationary response statistics. Fig. 4 depicts variation of g/x2

2S
with the nonlinearity coefficient b for an excitation centered at the natural frequency of the harvester, i.e. oc ¼on. We
note that, for large bandwidths approaching the White excitation limit, the mean square velocity and hence power
are insensitive to variations in the nonlinearity. This corroborates the results of Eq. (8). For the parameters used in
the simulations, the expected value of the velocity as calculated using Eq. (8) is /x2

2S¼ 1. This represents the limit which
the curves of Fig. 4 approach when g approaches infinity.

For smaller bandwidths, the expected value of the power becomes sensitive to variations in the nonlinearity coefficient.
Indeed, Fig. 4 demonstrates that the mean power decreases as the nonlinearity increases indicating that the nonlinearity
does not improve the output power even when the excitations are Colored. In other words, best harvester’s performance is
always attained when b¼ 0. Long-time numerical integration of the governing equations using the Stochastic
Communication Toolbox in Matlab reveals good agreement with the Van Kampen expansion for large bandwidths and
small nonlinearities. As the bandwidth decreases, especially for large nonlinearities, more deviations are pronounced.
This can be attributed to the fact that, as the bandwidth gets smaller, the variance of x1 and x2 increases significantly and
the one term Van Kampen expansion adopted here becomes inaccurate.

To study the effect of the nonlinearity on the output power for random excitations having very small bandwidths, we
revert to a long-time integration scheme where the governing equation are integrated for a very long time (approximately
100 000 T, where T is the response period). The expected mean square value of x2 is then obtained numerically and
normalized by the expected mean square value of the excitation x3. This normalization is necessary because, unlike the Van
Kampen expansion where /x2

3S is guaranteed to be constant; /x2
3S varies as b is changed in the numerical scheme. We

kept these variations to less than 1 percent of the nominal value by integrating for a longer periods of time. Fig. 5 depicts
variation of /x2

2S=/x2
3S with b for g¼ 0:05. Again, we can clearly see that the nonlinearity causes the expected value of the

output power to drop significantly when compared to the linear harvester.

4.2. Effect of the excitation’s center frequency

Since the steady-state response-frequency curves under deterministic excitations bend to the right as the nonlinearity
increases, it may be beneficial to tune the excitation’s center frequency to a frequency that is larger than the natural one.
To investigate this argument, Fig. 6 depicts variation of the mean square velocity with the nonlinearity coefficient for
different center frequencies and g¼ 1. It can be seen that, in general, when the bandwidth is large, the trend of the mean
power decreasing with the nonlinearity continues even for excitations that are not centered at the natural frequency of the
harvester. Furthermore, as expected, the mean value of the power increases with oc. As such, it can be beneficial to tune
energy harvesters with inherent stiffness-type nonlinearities to a frequency that is slightly larger then the natural
frequency when the nonlinearity is of the hardening nature, and to a frequency that is slightly less then the natural
frequency for softening nonlinearities. We also note that, when b¼ 0, the expected value of the output power is slightly
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Fig. 4. Variation of the mean square velocity with the nonlinearity coefficient b for different values of g. Results are obtained for ceff=0.05, S=0.05, on ¼ 1,

and oc ¼ 1. Circles represent solutions obtained via long time integration (100 000 T where T is the response period) of the equations of motion at g¼ 1.

The integration was carried using the stochastic communication toolbox in Matlab.
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M.F. Daqaq / Journal of Sound and Vibration 329 (2010) 3621–3631 3627
larger for larger oc ’s. This phenomenon, however, has nothing to do with power enhancement and occurs only because of
the nature of the second-order filter used to simulate the excitation. Specifically, because the peak in the excitation
spectrum shifts towards lower frequencies as g increases, the mean output power increases when the center frequency of
the excitation is shifted towards larger frequencies.
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To investigate the influence of the excitation’s center frequency for smaller bandwidths, we use long-time integration to
study variation of the /x2

2S=/x2
3S with the center frequency for g¼ 0:05 and b¼ 0:5 as shown in Fig. 7. It can be seen that

the peak in the expected value does not occur at oc ¼ 1 but rather at a larger value, approximately oc ¼ 1:35 for this
simulation. Again, this indicates that, for energy harvesters having nonlinearities in the compliance, it can be beneficial to
tune the harvester at larger frequencies depending on the value of the nonlinearity and bandwidth of the excitation. For
the same bandwidth and a larger nonlinearity, b¼ 1, the expected value of the power decreases and the peak response
shifts towards an even larger frequency, oc ¼ 1:45, see Fig. 8. This reinforces the conclusion that the mean power decreases
with the nonlinearity even for smaller bandwidths. It is also worth noting that the peak values obtained at the optimal oc

for the nonlinear harvesters remain much smaller than those obtained for a linear harvester whose natural frequency is
tuned at the center frequency of the excitation. Indeed, for b¼ 0, on ¼oc and the same parameters used in the previous
simulations, /x2

2S=/x2
3S¼ 210. This is approximately 5.5 times that obtained at the optimal oc when b¼ 0:5 and about 7.5

times that obtained at the optimal oc when b¼ 1.

5. Conclusions and future work

We studied the response of uni-modal duffing harvesters to Gaussian White and Colored excitations. We showed
that the mean output power of the harvester under White excitations is not influenced by stiffness-type nonlinearities.
We also demonstrated that other type of nonlinearities such as damping and inertia nonlinearities may be beneficial to
the harvester’s operation. As such, future efforts should be directed towards incorporating such nonlinearities into the
operation concept of energy harvesters. Furthermore, our results show that stiffness-type nonlinearities hinder the
efficiency of the harvester under Colored excitations of different bandwidths and center frequencies. Hence, in general,
such nonlinearities should be avoided when designing energy harvesters for forced-vibration random environments.
Additional work is needed to assess the importance of base-excitation rather than forced-vibration of duffing harvesters.
Current work is focused on extending this analysis to bi-modal duffing type harvesters.

Appendix A. Equations governing the response statistics

d

dt
/Z2

1S¼ 2/Z1Z2S (A.1)

d

dt
/Z2

2S¼�2o2
n/Z1Z2S�2bS/Z3

1Z2Sþ2/Z2Z3S�2ceff/Z2
2S (A.2)

d

dt
/Z2

3S¼ 2/Z3Z4S (A.3)

d

dt
/Z1Z2S¼/Z2

2S�o
2
n/Z

2
1S�bS/Z4

1Sþ/Z1Z3S�ceff/Z1Z2S (A.4)

d

dt
/Z1Z3S¼/Z2Z3Sþ/Z1Z4S (A.5)

d

dt
/Z1Z4S¼/Z2Z4S�g/Z1Z4S�o

2
c/Z1Z3S (A.6)
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d

dt
/Z2

4S¼�2g/Z2
4S�2o2

c/Z3Z4Sþ2a (A.7)

d

dt
/Z2Z4S¼�o

2
n/Z1Z4S�Sb/Z3

1Z4Sþ/Z3Z4S�ðceffþgÞ/Z2Z4S�o
2
c/Z2Z3S (A.8)

d

dt
/Z2Z3S¼�o

2
n/Z1Z3S�bS/Z3

1Z3Sþ/Z
2
3S�ceff/Z2Z3Sþ/Z2Z4S (A.9)

d

dt
/Z3Z4S¼/Z2

4S�g/Z3Z4S�o
2
c/Z

2
3S (A.10)

d

dt
/Z2Z

3
1S¼ 3/Z2

1Z
2
2S�o

2
n/Z

4
1Sþ/Z

3
1Z3S�ceff/Z3

1Z2S (A.11)

d

dt
/Z4

1S¼ 4/Z3
1Z2S (A.12)

d

dt
/Z3

1Z4S¼ 3/Z2
1Z2Z4S�g/Z

3
1Z4S�o

2
c/Z

3
1Z3S (A.13)

d

dt
/Z3

1Z3S¼ 3/Z2
1Z2Z3Sþ/Z

3
1Z4S (A.14)

d

dt
/Z2

1Z
2
2S¼ 2/Z1Z

3
2S�2o2

n/Z
3
1Z2Sþ2/Z2

1Z2Z3S�2ceff/Z2
1Z

2
2S (A.15)

d

dt
/Z2
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2
2Z4Sþ/Z

2
1Z3Z4S�ðgþceff Þ/Z2

1Z2Z4S�o
2
c/Z

2
1Z2Z3S�o

2
n/Z

3
1Z4S (A.16)

d

dt
/Z2
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2
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2
1Z

2
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1Z2Z4S�ceff/Z2
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3
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d
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3
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2
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d
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d

dt
/Z2
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